Spatial distributions and chemical properties of PM2.5 based on 21 field campaigns at 17 sites in China.

نویسندگان

  • Jing Zheng
  • Min Hu
  • Jianfei Peng
  • Zhijun Wu
  • Prashant Kumar
  • Mengren Li
  • Yujue Wang
  • Song Guo
چکیده

Severe air pollution and its associated health impacts have become one of the major concerns in China. A detailed analysis of PM2.5 chemical compositions is critical for optimizing pollution control measures. In this study, daily 24-h bulk filter samples were collected and analyzed for totally 21 field campaigns at 17 sites in China between 2008 and 2013. The 17 sites were classified into four groups including six urban sites, seven regional sites, two coastal sites in four fast developing regions of China (i.e. Beijing-Tianjin-Hebei region, Yangtze River Delta, Pearl River Delta and Sichuan Basin), and two ship cruise measurements covered the East China Sea and Yellow Sea of China. The high average concentrations of PM2.5 and the occurrences of extreme cases at most sites imply the widespread air pollution in China. Fine particles were largely composed of organic matter and secondary inorganic species at most sites. High correlation between the temporal trends of PM2.5 and secondary species of urban and regional sites highlights the uniformly distributed air pollutants within one region. Secondary inorganic species were the dominant contributors to the high PM2.5 concentration in Northern China. However in Southern China, the relative contributions of different chemical species kept constant as PM2.5 increased. This study provides us a better understanding of the current state of air pollution in diversified Chinese cities. Analysis of chemical signatures of PM2.5 could be a strong support for model validation and emission control strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Spatial Structure of Groundwater Quality Variables Based on the Geostatistical Simulation

Our main objective in the present study was to assess the spatial variation of chemical and physical water properties. Prior to the design of groundwater quality monitoring networks, it is essential to investigate the spatial structure of the groundwater quality variables. A case study is presented which used ground water quality observations from groundwater domestic wells in the Dameghan, Ira...

متن کامل

Spatial variability of some soil properties for site specific farming in northern Iran

Evaluating agricultural land management practices requires knowledge of soil spatial variability and understanding their relationships. Spatial distributions for fourteen soil physical and chemical properties were examined in a wheat field in Sorkhankalateh district, in Golestan province, Iran. 101 soil samples at the distances of 5m, 10m and 20m as nested grid were collected at the depth of 0-...

متن کامل

Evaluation of PM2.5 Emissions in Tehran by Means of Remote Sensing and Regression Models

Defined as any substance in the air that may harm humans, animals, vegetation, and materials, air pollution poses a great danger to human health. It has turned into a worldwide problem as well as a huge environmental risk. Recent years have witnessed the increase of air pollution in many cities around the world. Similarly, it has become a big problem in Iran. Although ground-level monitoring ca...

متن کامل

Evaluation of PM2.5 Emissions in Tehran by Means of Remote Sensing and Regression Models

Defined as any substance in the air that may harm humans, animals, vegetation, and materials, air pollution poses a great danger to human health. It has turned into a worldwide problem as well as a huge environmental risk. Recent years have witnessed the increase of air pollution in many cities around the world. Similarly, it has become a big problem in Iran. Although ground-level monitoring ca...

متن کامل

National-Scale Estimates of Ground-Level PM2.5 Concentration in China Using Geographically Weighted Regression Based on 3 km Resolution MODIS AOD

High spatial resolution estimating of exposure to particulate matter 2.5 (PM2.5) is currently very limited in China. This study uses the newly released nationwide, hourly PM2.5 concentrations to create a nationwide, geographically weighted regression (GWR) model to estimate ground-level PM2.5 concentrations in China. A3 km resolution aerosol optical depth (AOD) product from MODIS is used as the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2016